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Abstract

Machine learning-based UAV networks integrate advanced sensor data
to enhance the accuracy of vehicle guidance systems in underground pas-
sages by combining information from multiple sources. Autonomous ve-
hicles rely on uninterrupted communication channels and real-time envi-
ronmental feedback, yet subterranean corridors pose challenges for GPS-
based navigation and traditional wireless transmission protocols. Ma-
chine learning modeling coupled with robust channel estimation tech-
niques helps overcome these limitations by facilitating detection of ob-
stacles, improving path planning, and mitigating interference. V2X com-
munication frameworks enable stable vehicle-to-infrastructure interactions
with dynamically updated network topologies and edge-based computing
strategies. Research efforts examine the effectiveness of machine learning
algorithms in predicting network conditions and adjusting UAV trajec-
tories to maintain link quality and vehicle control. This paper explores
architectural designs, algorithmic foundations, and experimental evalua-
tions of machine learning-driven UAV-enabled sensor networks and V2X
communication strategies to provide reliable guidance for vehicles op-
erating in underground environments. Results illustrate improvements
in communication throughput, location precision, and navigation safety,
thereby demonstrating the viability and impact of these integrated ap-
proaches. Focus is placed on architectural flexibility, scalability, and ro-
bustness against faulty links and environmental uncertainties. Insights
gained offer guidelines for deploying machine learning-driven solutions
that address critical communication, localization, and safety objectives
in underground transportation infrastructures.
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1 Introduction

Machine learning-based techniques drive a new era of sensor integration, path
planning, and data fusion in autonomous vehicle navigation. Rapid develop-
ments in computational intelligence have enabled data-driven models to inter-
pret complex patterns in real time, transforming how machines process and uti-
lize sensor data. Underground passages, such as tunnels or subterranean parking
facilities, challenge traditional guidance systems with reduced satellite signals,
multipath interference, and obstructed communication channels. Conventional
approaches relying on GPS or static sensor arrays often fail to maintain con-
sistent accuracy, necessitating the incorporation of machine learning algorithms
capable of adaptive behavior and anomaly detection [1], [2].

UAV platforms complement ground-based sensor nodes by extending com-
munication coverage, facilitating line-of-sight connectivity, and offering dynamic
repositioning based on environmental demands. Deploying UAV networks in
constrained or partially obstructed settings introduces complexities related to
flight stability, power consumption, and collision avoidance. Machine learning
approaches that unify reinforcement learning, supervised classification, or unsu-
pervised clustering optimize the process of UAV placement and motion control.
Real-time adjustments in flight paths help sustain robust communication links,
minimize interference, and preserve energy resources. Such strategies demand
rigorous computational frameworks that can handle high volumes of heteroge-
neous sensor data, including radar, LIDAR, acoustic measurements, and infrared
imaging [3].

V2X communication expands these capabilities by engaging vehicles, in-
frastructure, and external agents in a cohesive information exchange. Packet
delivery requirements and latency constraints become more stringent in sub-
terranean settings, where wireless signals must navigate reflective surfaces and
material-induced attenuation. Vehicles moving at varying speeds expect contin-
uous feedback loops and seamless handoffs across multiple data streams. Ma-
chine learning-based solutions that infer traffic flow, estimate channel state infor-
mation, and predict link deterioration can enhance decision-making on routing
protocols and resource allocation schemes.

UAV-enabled sensor networks are evolving to incorporate edge and fog com-
puting elements, placing machine learning functions closer to data sources. Dis-
tributed intelligence frameworks enable each node to handle localized processing
tasks, limiting network congestion and expediting system response to environ-
mental changes. Coordination among UAV nodes and ground control centers
relies on robust synchronization mechanisms that handle the scale and complex-
ity of subterranean deployments. Cooperative UAV movements can map regions
of interest, gather environmental parameters, and relay essential updates to ve-
hicles, thus improving both positioning accuracy and hazard detection [4], [5].

Research in machine learning-driven UAV networks for underground navi-
gation focuses on methods that achieve reliable performance under high uncer-
tainty. Noisy sensor inputs, unpredictable airflow patterns, and limited avail-
able power require continuous tuning of machine learning parameters. Models
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that incorporate domain knowledge, such as spatial geometry or electromag-
netic wave propagation within tunnels, exhibit improved convergence and re-
duced false positives. Hybrid solutions that combine data-driven insights with
analytical channel modeling adapt more quickly to transient events, maintaining
steady communication links that are crucial for vehicular control.

System-level optimization is paramount for integrating machine learning al-
gorithms with UAV-enabled sensor nodes and V2X communication protocols.
Machine learning modules must manage real-time demands, ensuring that pre-
dictive tasks related to link quality, path planning, and anomaly detection do
not exceed computational budgets. Scalability remains a core challenge, as ad-
ditional vehicles or UAVs introduce traffic overhead, making efficient routing
and resource management an integral aspect. Power-limited hardware compo-
nents and intermittent network availability motivate research into lightweight,
energy-conscious learning models capable of sustaining extended operations.

2 Machine Learning Paradigms for UAV-Enabled
Sensor Networks

Neural network architectures offer a versatile foundation for decision-making in
UAV-enabled sensor networks, accommodating the diverse modalities and dy-
namic demands of subterranean environments. Convolutional networks extract
spatial features from optical or radar data, providing real-time object detec-
tion and collision avoidance capabilities. Recurrent or LSTM-based networks
address sequence prediction tasks such as signal degradation or UAV position
tracking, which demand a temporal understanding of data patterns. Hybrid
models blend the strengths of both convolutional and recurrent layers, enabling
simultaneous feature extraction and sequence modeling.

Support vector machines (SVMs) and random forests preserve interpretabil-
ity for certain classification or regression tasks. These algorithms often require
fewer computational resources than deep neural networks, making them advan-
tageous for embedded UAV systems operating with limited battery capacity.
SVM-based classifiers can categorize obstacles or identify signal interference
profiles in real time, while random forests can correlate sensor outputs from
various UAVs to detect emergent events. Ensemble learning schemes that com-
bine multiple algorithms at once further elevate reliability, as disagreements
among classifiers can be used to trigger specialized re-learning or verification
procedures.

Reinforcement learning (RL) emerges as a strategic choice in adaptive flight
control and network resource management. UAVs guided by RL agents learn
through iterative interactions with the environment, refining their motion tra-
jectories and resource allocation decisions to optimize communication through-
put or network coverage. Policies derived from Q-learning or policy gradient
methods evolve based on reward signals, such as minimized latency or improved
coverage area. Multi-agent RL scenarios place multiple UAVs or vehicles in a
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shared environment, requiring them to coordinate actions to avoid collisions and
increase overall system efficiency. This approach aims to reduce overhead and
exploit cooperative behaviors, as each agent’s success is tied to global objectives
spanning coverage, power usage, and data throughput.

Clustering algorithms transform raw sensor data into meaningful patterns
that guide UAV node positioning. K-means or density-based methods can iden-
tify regions with high interference levels or dense traffic flows, prompting UAVs
to readjust their formation to reduce congestion. Anomaly detection techniques
glean patterns of abrupt changes, enabling sensor nodes to rapidly respond to
hardware failures or unforeseen physical obstacles. UAVs equipped with unsu-
pervised learning can generate topological maps of tunnels and passageways,
aiding ground vehicles in selecting optimal routes.

Transfer learning techniques expedite the training process when prior data
or simulations exist in related domains. UAV navigation tasks in above-ground
environments or simpler indoor passages can inform initial weights of neural
networks before deployment underground. This reduces the need to train mod-
els from scratch in complex subterranean conditions, saving time and compu-
tational resources. Domain adaptation methods refine the transferred repre-
sentations by aligning distributional discrepancies between source and target
environments, mitigating performance drops due to noise or unique tunnel ge-
ometries.

Hyperparameter optimization strategies enhance the performance of ma-
chine learning algorithms in UAV-enabled sensor networks. Grid search, Bayesian
optimization, or genetic algorithms systematically explore parameter configura-
tions, optimizing network architectures, learning rates, or regularization values.
Adaptive optimizers like Adam or RMSProp adjust learning rates dynamically,
ensuring stable and efficient convergence in fluctuating environments. Fine-
tuning the balance between model complexity and inference speed is crucial,
given the constraints of onboard computing and the real-time nature of subter-
ranean navigation. Excessively large models risk power depletion and thermal
overload, while smaller models risk oversimplification and inadequate feature
extraction.

Generalization across a spectrum of operating conditions remains a pivotal
concern when deploying machine learning solutions underground. Various tun-
nel cross-sections, material compositions, lighting conditions, and interference
sources can fluctuate unpredictably. Training data must capture these varia-
tions to avoid overfitting and to maintain robust performance under unforeseen
scenarios. Augmentation methods that synthetically add noise, replicate diverse
structural geometries, or simulate worst-case signal disruptions can strengthen
model resilience. Real-world validation of such algorithms demands iterative
testing and refinement, ensuring that performance metrics remain consistent
over time and across a broad range of conditions.
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3 UAV Deployment Strategies in Underground
Environments

Autonomous UAV deployment in subterranean passages concentrates on ensur-
ing effective coverage and robust connectivity for sensor nodes and vehicle guid-
ance. Placement strategies determine how many UAVs are needed, where they
should hover or move, and how they coordinate to form a cohesive network ca-
pable of delivering uninterrupted communication [6]. Topological constraints in
tunnels or underground corridors, such as sharp turns, irregular cross-sections,
and limited height clearance, influence path planning algorithms. Precomputed
or dynamically generated maps of the environment contribute valuable inputs to
these deployment strategies, allowing UAVs to position themselves strategically
and reduce communication dead zones [7].

Terrain-aware flight control systems rely on depth sensors, thermal cameras,
and LIDAR arrays to maintain a safe distance from walls, ceilings, and other
UAVs. Collision avoidance often hinges on real-time sensor fusion. Machine
learning-based obstacle detection refines each sensor’s output by filtering noise
and compensating for occlusions. UAVs that employ coordinated flight patterns
may operate in formations, distributing coverage responsibilities while maintain-
ing line-of-sight channels. This cooperative approach reduces the risk of single
points of failure and ensures that if one UAV node loses connectivity or expe-
riences mechanical difficulties, neighboring UAVs can compensate, preserving
network continuity.

Dynamic trajectory planning adjusts UAV routes according to changes in
the environment or the demands of vehicle guidance [8]. High traffic density
in certain tunnel segments may require UAVs to cluster in that area for in-
creased data throughput. Low-power transmissions in other regions might war-
rant sparser distributions of UAVs to conserve energy or reallocate bandwidth.
Reinforcement learning and multi-objective optimization methods balance com-
peting parameters such as coverage, power consumption, latency, and link qual-
ity. Control systems must also consider variable airflow patterns and ventilation
systems underground, as these can impact UAV stability and battery efficiency.

Inter-UAV communication protocols govern how nodes exchange information
about their positions, sensor readings, or traffic loads. Ad hoc networking ap-
proaches like geographic routing or gossip-based protocols enable decentralized
control, freeing the system from reliance on a single ground-based server. Ma-
chine learning modules embedded in each UAV can infer likely congestion points
or interference zones, thereby coordinating repositioning strategies. Consensus
algorithms help nodes agree on tasks or routes, preventing fragmentation of cov-
erage areas. These distributed frameworks handle node failures or unexpected
disruptions more gracefully than centralized alternatives [9], [10].

Energy management poses significant challenges, given that UAVs rely on
limited onboard battery capacity. Deployment strategies must weigh the trade-
offs between flight duration, sensor activity, and data relay responsibilities.
Wireless charging stations or tethered power supplies in designated safe zones
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can extend mission time, but they introduce additional infrastructure costs
and planning complexity. Machine learning models that predict power us-
age patterns help schedule recharging cycles and adjust operational intensity.
UAVs might alternate between active coverage, partial hibernation, and docking
phases to maintain system-wide endurance.

Environmental factors such as humidity, dust, and lighting variations in-
fluence sensor reliability and thus shape UAV deployment. Data collected by
UAV sensors may degrade due to moisture or contaminant buildup, particularly
in older or poorly ventilated tunnels. Preemptive measures such as protective
housings for cameras and gimbals reduce sensor malfunction rates, but do not
completely mitigate performance dips. Machine learning algorithms that adapt
calibration parameters based on dynamic sensor readings offer additional re-
silience. UAV paths can be adjusted to minimize exposure to harsh conditions,
or to periodically pass through cleaning or inspection stations without compro-
mising communication.

Deployment validation requires simulation environments and field experi-
ments to test the interplay of UAV flight control, sensor fusion, communication
protocols, and machine learning algorithms. Simulation platforms incorporate
realistic physics engines, radio frequency propagation models, and dynamic ob-
stacle generation to approximate real-world conditions. Field experiments, often
performed in controlled segments of actual tunnels, measure end-to-end perfor-
mance metrics such as data throughput, latency, and coverage. These empirical
insights drive iterative refinements, leading to more sophisticated deployment
strategies capable of addressing the idiosyncrasies of subterranean environments.
Future work continues to explore innovative designs, including swarming UAVs
with modular sensor payloads and advanced flight autonomy for expanded roles
in mapping, inspection, and emergency response.

4 V2X Communication Protocols for Reliable
Subterranean Networking

Vehicle-to-everything (V2X) communication architectures aim to connect vehi-
cles, UAVs, roadside units, and control centers into an integrated system. Re-
dundant communication links become essential in underground passages where
signal fading and multipath effects degrade reliability. High frequencies often
suffer attenuation in tunnels, demanding careful selection of bands and mod-
ulation schemes to maintain link quality. Bandwidth constraints also pose a
challenge, as multiple vehicles or UAVs compete for the same frequency spec-
trum in a confined space, risking collisions and interference.

Channel modeling in subterranean contexts uses empirical data and wave
propagation theory to estimate signal behavior across various tunnel geome-
tries. Ray tracing simulations and in situ measurements help calibrate predic-
tive models. Machine learning-driven channel estimation refines these calcula-
tions by continually adjusting to newly observed conditions, such as interference



International Journal of Applied Machine Learning 22

from maintenance equipment or fluctuations in the local environment. Neural
networks that take raw channel state information or spectral measurements as
input can predict future channel conditions, enabling proactive resource alloca-
tion [11].

Resource allocation strategies decide how available bandwidth, power lev-
els, and time slots are shared among V2X participants. Centralized schedul-
ing can guarantee certain quality-of-service metrics, but it may struggle with
responsiveness in rapidly changing subterranean conditions. Decentralized or
distributed methods rely on peer-to-peer negotiations, where each node esti-
mates network congestion and adjusts its transmission parameters accordingly.
Game-theoretic models and reinforcement learning approaches aid in formulat-
ing these strategies, balancing communication demands with available resources
to prevent bottlenecks or priority inversions [12], [13].

Handover mechanisms address the transfer of vehicles or UAVs between com-
munication nodes without dropping data streams. Multiple access technologies,
such as Wi-Fi, cellular [14], or dedicated short-range communications (DSRC),
can coexist in V2X networks, each offering distinct trade-offs in range, band-
width, and latency. Machine learning classifiers predict when a connection de-
teriorates and trigger seamless handovers before substantial packet loss occurs.
Hidden Markov models or LSTM networks trained on historical mobility and
signal data can forecast transitions, letting nodes prepare link resources in ad-
vance and avoid service interruptions [12], [15].

Security protocols protect data integrity and confidentiality, an increasingly
vital requirement as V2X networks expand. Underground passages can serve as
potential attack vectors if unauthorized devices attempt to intercept or spoof
signals. Cryptographic measures, secure key management, and intrusion detec-
tion systems form the bedrock of secure V2X architecture. Machine learning
models for anomaly detection monitor traffic patterns and encryption signa-
tures, flagging suspicious behavior or unrecognized transmitters. UAVs that
operate as relay nodes must also incorporate strong authentication and secure
session management to maintain trust across the network.

Edge computing architectures relocate intensive processing tasks from re-
mote cloud data centers to local edge devices or UAV nodes, reducing latency
and alleviating backhaul congestion. Subterranean networks especially benefit
from nearby data processing, as connectivity to external servers can be intermit-
tent. Localization algorithms, obstacle detection, and traffic flow estimation can
be offloaded to edge servers deployed in strategic locations. UAVs that hover at
choke points can perform real-time sensor fusion, returning summarized results
to vehicles. This approach preserves bandwidth for critical data and accelerates
response to environmental changes.

Standardization efforts in V2X communication address protocol interoper-
ability and ensure seamless integration with existing infrastructure. Industry
alliances and regulatory bodies have proposed frameworks covering communica-
tion frequencies, power limits, and message formats. However, subterranean
complexities introduce additional challenges, prompting the development of
specialized protocols for tunnel-based V2X communication. Machine learning-
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based channel adaptation or scheduling, once standardized, can be integrated
into future releases of V2X specifications. These collective efforts facilitate cross-
vendor compatibility and accelerate adoption of robust, scalable solutions.

5 Performance Evaluation and Future Directions

System performance in machine learning-driven UAV-enabled sensor networks
is typically measured via throughput, latency, coverage, reliability, and energy
efficiency. Underground passages, with their inherent signal attenuation and
complex geometry, emphasize the need for robust metrics. Single-point measure-
ments provide only partial insights, motivating the use of distributed monitoring
tools that collect performance data from multiple nodes. UAVs themselves can
function as mobile probes, scanning radio frequencies and mapping interference
patterns as they traverse tunnels. Continuous performance tracking allows rapid
detection of trends and anomalies, which in turn guides prompt recalibration of
machine learning models or redeployment of UAV nodes.

Experimental testbeds combine laboratory settings, scaled-down tunnel repli-
cas, and operational field sites to refine system design. Laboratory environments
allow researchers to isolate factors such as humidity, temperature, or dust con-
centrations, observing their direct impact on communication quality. Scaled
replicas of tunnel sections permit controlled experimentation with UAV flight
behaviors, sensor range, and channel interference, all while minimizing risks
and reducing costs compared to full-scale tests. Field deployments validate the
entire system under real-world operational stresses, confirming whether theo-
retical gains translate into measurable improvements in coverage, latency, and
navigation accuracy.

Multi-metric evaluations clarify the trade-offs encountered when fine-tuning
machine learning parameters. High-throughput demands may conflict with en-
ergy efficiency, as more frequent transmissions and data processing tasks deplete
UAV batteries. Latency-sensitive applications that require rapid feedback loops
push systems toward more expensive or bandwidth-intensive communication
strategies. Reinforcement learning can discover Pareto-optimal configurations,
revealing the relationships among throughput, latency, coverage, and energy us-
age in a subterranean context. Decision-makers can weigh these trade-offs based
on operational priorities or mission objectives, whether that involves passenger
safety, throughput for autonomous vehicles, or longevity of the UAV network.

Adaptive beamforming and advanced antenna designs present potential av-
enues for boosting signal quality in tunnels. Phased-array antennas can dy-
namically direct beams to follow vehicles, minimizing reflections and multipath
fading. UAV nodes equipped with steerable antennas can adjust their orienta-
tion to maintain optimal links, guided by machine learning predictions of vehicle
trajectories. Such hardware innovations must integrate seamlessly with the net-
work’s higher-level algorithms, ensuring that changes in antenna configuration
do not introduce additional latency or destabilize resource allocation.

Integration of quantum computing for real-time data analysis or crypto-
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graphic protocols has been discussed in some future-proof designs. Though
quantum computing remains in an early stage, the potential for exponential
speed-ups in optimization or encryption tasks makes it a subject of growing
interest. Subterranean communication scenarios could benefit from quantum-
safe encryption methods, especially if critical infrastructure demands secure and
long-lasting data protection. However, practical constraints related to hardware
portability, cooling, and error correction remain barriers to immediate adoption
in UAV-based networks.

Projections for future research include broader incorporation of sensor modal-
ities, extending beyond vision and conventional radio frequency measurements.
Hyperspectral imaging, acoustic sensors, and chemical detectors can identify
hazards such as gas leaks or structural weaknesses in tunnels, adding another
layer of complexity to data processing. Machine learning models that assimi-
late these diverse inputs require sophisticated data fusion algorithms capable of
managing correlated noise and different sampling frequencies. UAVs may as-
sume roles as safety inspectors or first responders, relaying critical information
to vehicles and control stations.

Next-generation 6G or beyond-6G wireless technologies promise ultra-low
latency, high data rates, and improved localization capabilities, which could
significantly enhance subterranean V2X networks. Machine learning solutions
in these networks might exploit large-scale MIMO (multiple input, multiple out-
put) systems, integrated sensing and communication platforms, and advanced
spectrum-sharing schemes. Dense deployment of intelligent reflecting surfaces
may also mitigate signal blockage, redirecting radio waves around corners. Sub-
terranean UAV nodes could coordinate beam reflections, ensuring stable connec-
tivity even in otherwise unreachable areas. These developments demand ongoing
research to refine system integration and reliability under realistic operational
constraints.

Emerging standards and regulatory frameworks highlight the need for in-
teroperability and certification in subterranean UAV and V2X deployments.
Public safety implications, coupled with the complexities of managing airspace
in confined underground locations, call for detailed guidelines that encompass
risk assessment, collision avoidance, and mission-critical communication. Col-
laboration among government bodies, industry consortia, and academic institu-
tions will be vital to harmonize communication standards and allocate spectrum
resources for underground operations. Machine learning, as a key enabling tech-
nology, must integrate transparency and accountability mechanisms that allow
auditing and compliance checks in real deployments.

Hybrid simulation frameworks represent a possible direction for accelerating
development cycles. Coupled with advanced digital twins, these frameworks
combine physics-based tunnel representations, network emulation, and artificial
intelligence modules. UAV trajectories, sensor readings, and channel states
update continuously in the simulation, allowing researchers to inject faults or
scenario variations at any point without risking physical assets. The interplay
between high-fidelity models and real sensor data fosters an iterative loop of
development, testing, and validation. This approach can drastically reduce
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time-to-market for new UAV or V2X technologies while ensuring that emergent
solutions meet the stringent reliability standards demanded by subterranean
environments.

6 Conclusion

Machine learning-driven UAV-enabled sensor networks in subterranean pas-
sages maintain robust vehicle guidance through adaptive, data-centric strate-
gies. Challenges posed by GPS-denied settings [16], irregular tunnel geometries,
and interference-heavy environments underscore the necessity of techniques that
learn from real-time sensor fusion and predictive analytics. UAV deployments,
informed by reinforcement learning, clustering, or supervised algorithms, offer
dynamic coverage and collision avoidance capabilities. V2X protocols, aug-
mented by channel modeling and distributed resource allocation, establish reli-
able communication channels that enable continuous feedback loops for vehicles
traveling at various speeds.

Integration of machine learning algorithms across UAV platforms, edge com-
puting nodes, and vehicular systems promotes scalability and fault tolerance.
Nodes that coordinate flight paths, orchestrate recharging cycles, and share
detailed environmental maps minimize downtime and improve overall system
resilience. Emerging technologies such as quantum-safe encryption, hyperspec-
tral sensing, and 6G-enabled network architectures further expand capabilities,
although practical constraints related to energy, hardware, and regulation must
be addressed systematically. Performance evaluations conducted in laboratory
setups, scaled tunnel replicas, and operational deployments clarify that multi-
metric trade-offs exist among latency, throughput, and energy efficiency, requir-
ing sophisticated decision-making frameworks to align system behavior with
mission goals [17], [18].

Knowledge garnered from these advanced subterranean systems informs broader
applications in search-and-rescue, industrial inspection, and future smart in-
frastructure. Machine learning-based UAV sensor networks and V2X commu-
nication pipelines pave the way for safer, more efficient underground mobil-
ity. Continued research into adaptive algorithms, intelligent routing protocols,
and hardware co-design principles is vital for evolving these integrated systems.
The promise of improved situational awareness, real-time hazard detection, and
uninterrupted connectivity highlights the transformative impact that machine
learning-driven UAV-enabled networks can have on subterranean transporta-
tion, ultimately shaping the next generation of underground mobility solutions.

References

[1] V. Vukadinovic, K. Bakowski, P. Marsch, et al., “3gpp c-v2x and ieee
802.11 p for vehicle-to-vehicle communications in highway platooning sce-
narios,” Ad Hoc Networks, vol. 74, pp. 17–29, 2018.



International Journal of Applied Machine Learning 26

[2] H. Ullah, N. G. Nair, A. Moore, C. Nugent, P. Muschamp, and M. Cuevas,
“5g communication: An overview of vehicle-to-everything, drones, and
healthcare use-cases,” Ieee Access, vol. 7, pp. 37 251–37 268, 2019.

[3] S. A. Farahani, J. Y. Lee, H. Kim, and Y. Won, “Predictive machine learn-
ing models for lidar sensor reliability in autonomous vehicles,” in Interna-
tional Electronic Packaging Technical Conference and Exhibition, Ameri-
can Society of Mechanical Engineers, vol. 88469, 2024, V001T07A001.

[4] R. Marini, S. Park, O. Simeone, and C. Buratti, “Continual meta-reinforcement
learning for uav-aided vehicular wireless networks,” in ICC 2023-IEEE In-
ternational Conference on Communications, IEEE, 2023, pp. 5664–5669.

[5] S. Mignardi, C. Buratti, A. Bazzi, and R. Verdone, “Trajectories and
resource management of flying base stations for c-v2x,” Sensors, vol. 19,
no. 4, p. 811, 2019.

[6] S. Bhat, “Leveraging 5g network capabilities for smart grid communica-
tion,” Journal of Electrical Systems, vol. 20, no. 2, pp. 2272–2283, 2024.

[7] J. Lieb and G. Peklar, “Evaluation of an unique communication interface
system d2x for uavs intercommunicating with air and ground utm users,”
in 2019 integrated communications, navigation and surveillance conference
(icns), IEEE, 2019, pp. 1–9.

[8] F. A. Farahani, S. B. Shouraki, and Z. Dastjerdi, “Generating control com-
mand for an autonomous vehicle based on environmental information,” in
International Conference on Artificial Intelligence and Smart Vehicles,
Springer, 2023, pp. 194–204.

[9] S. A. Hadiwardoyo, E. Hernández-Orallo, C. T. Calafate, J.-C. Cano,
and P. Manzoni, “Evaluating uav-to-car communications performance:
Testbed experiments,” in 2018 IEEE 32nd International Conference on
Advanced Information Networking and Applications (AINA), IEEE, 2018,
pp. 86–92.

[10] O. Kavas-Torris, S. Y. Gelbal, M. R. Cantas, B. Aksun Guvenc, and L.
Guvenc, “V2x communication between connected and automated vehicles
(cavs) and unmanned aerial vehicles (uavs),” Sensors, vol. 22, no. 22,
p. 8941, 2022.

[11] S. M. Bhat and A. Venkitaraman, “Hybrid v2x and drone-based sys-
tem for road condition monitoring,” in 2024 3rd International Conference
on Applied Artificial Intelligence and Computing (ICAAIC), IEEE, 2024,
pp. 1047–1052.
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